PHOSPHATASE TEST - FLUOROPHOS® ALP TEST SYSTEM
IMS #28

[Unless otherwise stated all tolerances are ±5%]

SAMPLES

1. Laboratory Requirements (see Cultural Procedures [CP] items 33 & 34) ________
 [See current version of M-a-98 to determine if this test method has been
 approved for use on the specific dairy product being tested]

APPARATUS

2. See CP items 1-32 (as necessary) ________

3. Cuvette Heating Block ________
 a. Thermostatically controlled at 38±1°C ________
 b. Check temperature and record each day of use ________

4. Pipettors, Fixed Volume or Electronic ________
 a. 75 μL pipettor ________
 b. 25 μL pipettor, for use with high-turbidity or high fat products (if needed) ________
 c. Calibrated as specified in CP item 6.e; maintain records ________

5. Reagent Dispenser ________
 a. Fixed volume 2.0 mL; calibrated and checked ________
 b. Optionally, use 2.0 mL fixed volume or electronic pipettor to dispense
 reagent or sterile serological pipette ________
 c. Calibrated as specified in CP item 6.e; maintain records ________

6. Cuvettes ________
 a. Disposable glass 12 x 75 mm, dirt and scratch free ________

7. Vortex Mixer (optional) ________

8. Fluorometer ________
 a. Air fan in the rear unobstructed ________
 b. Vents in the bottom base plate are unobstructed ________
 c. User's manual available ________
9. Water Baths, 34±1°C, 63±1°C, 66±1°C, Circulating (Confirmation Procedures)

 REAGENTS

10. Reagents, Handling and Storage

 a. Test Reagent Set
 1. Fluorophos substrate and Substrate buffer
 2. Lot #: ________ Exp. Date: ________

 b. Calibrator Set
 1. Calibrators A, B and C
 2. Lot #: ________ Exp. Date: ________

 c. PhosphaCheck® Pasteurization Controls Set
 1. Positive and Negative Control
 2. Lot #: ________ Exp. Date: ________

 d. Daily Instrument Control
 1. Lot #: ________ Exp. Date: ________

 e. Store reagents at 0-6ºC

11. Working Substrate

 a. Prepare reagents as per manufacturer instructions (mix by inversion until fully dissolved)

 b. Date (mixture stable 60 days at 0-6ºC)
 1. Label bottle with date prepared
 2. Preparation Date: ________

 c. Place clean 2 mL reagent dispenser (item 5) on prepared reagent bottle, or cap if using 2 mL pipettors or sterile serological pipette
12. Check Procedures (prior to testing each day of use)

 a. Zero Check
 1. A/D value: ________
 2. The reading must not exceed 314. If the reading exceeds 314, do not proceed; call for technical assistance
 3. Maintain records

 b. Calibrator C/Daily Instrument Control Check
 1. Use 2.0 mL of Calibrator C (item 10.b) or Daily Instrument Control (item 10.d) that has been warmed to 38±1ºC (approx. 20 min)
 a. A/D value: ________
 b. The A/D value must be 602±15
 c. If the value does not fall within the acceptable range, adjust according to manufacturer
 d. Maintain records

 c. Reconstituted Substrate/Buffer stability check
 1. Use 2.0 mL of working substrate (item 11) that has been warmed to 38±1ºC (approx. 20 min)
 a. A/D value: ________
 b. The A/D value must be < 1,200
 c. Maintain records

 d. Reconstituted Substrate/Buffer contamination check
 1. Use 2.0 mL of working substrate (item 11) that has been warmed to 38±1ºC (approx. 20 min)
 2. Initiate an ALP sample reading of the working substrate on an unused channel
 a. ALP value: ________
 b. The ALP value must be < 10 mU/L
c. If the working substrate value does not fall within the acceptable range, do not use working substrate; re-check to verify, reconstitute a new set of reagents or seek technical assistance before testing samples

d. Maintain records

CALIBRATION

(Required at Installation and After any Instrument Adjustments)

13. Calibration Procedure

a. Perform instrument and reagent checks (item 12) prior to proceeding

1. If readings from item 12 are within specification, proceed with calibration

2. If readings are not within specification, do not proceed with calibration, make appropriate adjustments or seek technical assistance and re-check

3. Record all values (initial and re-checks) in QC record

b. Check calibration ratio of Calibrators A, B and C; maintain records

1. Add 2 mL of each calibrator to appropriately labeled tubes

2. Heat tubes to 38±1°C for 20 min

3. Find an empty channel

4. Place a tube of warmed Calibrator A (with no milk added) into the cuvette chamber, close the door and press the "Start" key

5. Continue as prompted until all six (6) tubes have been run

6. Calibration ratio should be 151±7 (when A/D mode check for Calibrator C/Daily Instrument Control is 602±6)

7. If ratio within specification continue, if not make adjustment and re-check calibration ratio

c. Check calibration for products by adding 75 μL (or 25 μL) of the well-mixed product to each calibrator one tube at a time just prior to testing (Instrument calibrated for each product type; some products with similar fat content may share same channel)

1. Mix retail milk samples by inverting containers top to bottom, then bottom to top (a complete half circle or 180 degrees) without pausing, 25 times; use within 3 min
2. Mix subsamples of retail milk containers or controls by shaking 25 times in 7 sec with a 1 ft movement or vortex for 10 sec at maximum setting (subsamples in appropriate containers to allow the use of vortexing); use within 3 min

3. Remove test portion(s) avoiding foam and bubbles

 a. For positive displacement pipettors with reusable tip(s)
 1. Prior to pipetting, draw up MS water and expel to waste
 2. Dry exterior of piston
 3. Place tip of pipettor in sample (no more than 1 cm) and draw up and expel several times (avoid foam and bubbles)
 4. raw sample into pipettor
 5. Holding pipettor at about 90° to lab bench and with tip at about eye level, dry exterior of tip by quickly wiping from the pipettor over the tip
 6. Carefully inspect the pipettor tip to insure sample volume is flush with the tip
 7. If concave, re-sample
 8. If convex, re-wipe as above to achieve a flush sample volume (see item 13.c.3.a.5)

 b. For air displacement pipettor with new tip for each sample
 1. Depress plunger and place tip into sample (avoid foam or bubbles)
 2. Draw up test portion
 3. Remove from sample
 4. If excess product adheres to tip, wipe carefully without wicking sample

4. Dispel 75 μL (or 25 μL) of sample 1 cm below the surface of the calibrator (do NOT dispense down side of cuvette)

 a. With tip still below surface depress plunger three times into calibrator to completely expel sample
 1. With plunger still completely depressed, remove from tube
5. Mix immediately by vortexing, or mix by inversion after covering with Parafilm M or cap

6. Place cuvette in Fluorometer within 20 sec of adding product to calibrator

7. After each reading, remove cuvette and close door immediately

8. Maintain records of the calibrators

d. Re-calibration required if:

1. Controls out of limits

2. Adjustments made to bring A-D mode checks (item 11) into specification

3. Any significant instrument service if performed, e.g. lamp or filter replaced

e. Instrument checks and calibrations are within specification

CONTROLS

14. Negative Control

a. Use PhosphaCheck negative control from set in item 10.c

b. Or, optionally, prepare by heating a sample of product to 95±1°C, stirring or mixing as necessary (TC used)

1. Cool rapidly in an ice bath and hold at 0.0-4.5°C

2. Use within 24 hours or aliquot 1 mL quantities within 24 hours and freeze at −15°C or colder in a non-frost-free freezer or in an insulated foam container in a frost-free freezer; use within 2 months

 Lab Prep. Date: __________ Lab Exp. Date: __________

c. Test control as a sample (see item 16.b-k)

d. Value less than (<) 20 mU/L: ____________

e. Maintain records

15. Positive Control

a. Use PhosphaCheck positive control from set in item 10.c
b. Or, optionally to a portion of negative control (item 14.b), add approximately 0.1 mL of mixed-herd raw milk and bring up to approximately 100 mL with additional negative control

1. Use within 24 hours or, aliquot 1 mL quantities within 24 hours and freeze at –15°C or colder in a non-frost-free freezer or in an insulated foam container in a frost-free freezer; use within 2 months

 Lab Prep. Date: ___________ Lab Exp. Date: ___________

c. Test control as a sample (see item 16.b-k)
d. Value between 500±150 mU/L ____________
e. Maintain records

TEST PROCEDURE

16. Test Procedure

 [Samples kept at 0.0-4.5°C throughout testing]

a. Perform all instrument and reagent checks (item 12), negative control test (item 14) and positive control test (item 15) prior to running analysis

b. Using reagent dispenser, fixed volume or electronic pipettor, or sterile serological pipet, dispense 2.0 mL of working substrate into labeled 12 x 75 mm glass cuvettes

 1. Prime reagent dispenser (item 5) 3x prior to dispensing volumes to cuvettes to remove any bubbles from dispenser tubing

c. Warm substrate to 38±1°C in the heating block for 20 min (use within 4 hours)
d. Select the product type channel and enter identification number
e. Sample agitation

 1. Mix retail milk samples by inverting containers top to bottom, then bottom to top (a complete half circle or 180 degrees) without pausing, 25 times; use within 3 min

 2. Mix subsamples of retail milk containers or controls by shaking 25 times in 7 sec with a 1 ft movement or vortex for 10 sec at maximum setting (subsamples in appropriate containers to allow the use of vortexing), use within 3 min
Add products to substrate one tube at a time just prior to being tested, remove test portions avoiding foam and bubbles.

1. For positive displacement pipettors with reusable tip(s)
 a. Prior to pipetting, draw up MS water and expel to waste
 b. Dry exterior of piston
 c. Place tip of pipettor in sample (no more than 1 cm) and draw up and expel several times
 d. Draw sample into pipettor
 e. Holding pipettor at about 90° to lab bench and with tip and at about eye level, dry exterior of tip by quickly wiping from the pipettor over the tip
 f. Carefully inspect the pipettor tip to insure sample volume is flush with the tip
 g. If concave, re-sample
 h. If convex, re-wipe as above to achieve a flush sample volume (item 16.f.1.e)

2. For air displacement pipettor with new tip for each sample
 a. Depress plunger and place tip into sample (avoid foam or bubbles)
 b. Draw up test portion
 c. Remove from sample, touch off to side of container
 d. If excess product adheres to tip, wipe carefully without wicking sample
 g. Dispel 75 μL (or 25 μL) of sample about 1 cm below the surface of the substrate (do not dispense down side of cuvette)

1. With tip still below surface depress plunger three times into substrate to completely expel sample

2. With plunger still completely depressed, remove from tube

h. Mix by vortexing, or by inversion after covering with Parafilm M or cap

i. Place cuvette in Fluorometer within 20 sec of adding product to substrate and close cuvette door
j. Results will display in 3 min, save tape printout of results and record in QC record

1. If a 25 μL sample volume was used multiply the displayed value by 3

2. Record adjusted value in QC record

k. Samples with ≥350 mU/L or more of ALP activity are suspect positive and must be confirmed (item 17)

l. Maintain records

CONFIRMATION

17. Positive Confirmation

a. Retest suspect positive sample

b. Samples with ≥ 350 mU/L of ALP activity are suspect positive and must be tested for microbial, and reactivated phosphatase (items 18 & 19)

18. Negative Control

a. Prepare a negative control from each suspect product

b. For the preparation of control using the suspect product:

1. Prepare by heating sample for at least 1 min after temperature measuring device registers 95±1ºC, stirring or mixing as necessary (TC used)

2. Cool rapidly to 0.0-4.5ºC in an ice bath

c. Negative control must be less than 20 mU/L when tested

19. Microbial Phosphatase

a. Heat 1.0 mL of suspect sample at 63±1ºC for 30 min, stirring or mixing every 10 min (Use TC)

1. If fat content is >10%, heat at 66±1ºC for 30 min

b. Cool rapidly to 0.0-4.5ºC in an ice bath

c. Test heated sample, unheated sample and negative controls

d. Interpretation

1. If heated and unheated samples have equal activity (within ±5%), the sample is regarded Not Found for residual phosphatase, the activity originally measured is microbial
2. If the heated portion has significantly reduced (>5%) or no activity, the sample contains milk phosphatase activity, either residual or reactivated

20. Reactivated Phosphatase

a. Magnesium acetate solution commercially available

b. Or, prepared in laboratory

 1. Dissolve 35.4g of Mg(C2H3O2)2·4H2O in 25 mL MS water warming slightly to aid dissolution

 2. Pour solution into 100 mL volumetric flask, rinse original container several times and add rinses to flask

 3. After cooling, make up to 100 mL (stable for 1 year at 0.0-4.5°C)

c. Procedure

 1. Place 10 mL of each milk or milk product sample to be tested in a boiling water bath and hold 1 min after temperature sample has reached 95±1°C (Use TC)

 2. Cool samples rapidly to 0.0-4.5°C in an ice bath

 3. Place a 5 mL aliquot of sample (unheated) to be tested in a screw-cap test tube and add 0.1 mL MS water ("Blank" sample)

 4. To a second 5 mL aliquot (unheated) in an identical tube, add 0.1 mL Mg acetate solution ("Test" sample)

 5. Cap tubes and incubate both aliquots for 1 hour at 34±1°C (Use TC)

 6. Remove samples from water bath and cool rapidly to 0.0-4.5°C in an ice bath

 7. Dilute 1 mL of sample containing Mg acetate (Test) with 5 mL (1:6 dilution) of corresponding boiled milk or milk product control (items 19.b.1 & 2 above)

 8. Test undiluted sample containing no magnesium (Blank) and diluted sample containing Mg acetate (Test) for phosphatase activity (as described in item 16)
d. Interpretation

1. If the diluted aliquot containing Mg acetate (Test) has equal (±5%) or greater phosphatase activity than the undiluted aliquot containing no Mg acetate (Blank), the sample is regarded as negative for residual phosphatase, and the phosphatase originally measured is of **reactivated** origin

 \[\text{Diluted w/Mg (Test)} \geq \text{Undiluted (Blank)} = \text{Reactivated} \]

2. If the diluted aliquot (Test) contains less activity (< 5%) than the undiluted aliquot (Blank), the sample is considered positive for **residual phosphatase**

 \[\text{Diluted w/Mg (Test)} < \text{Undiluted (Blank)} = \text{Residual} \]

3. A false-positive for residual phosphatase may also be obtained if a reactivatable sample has been allowed to stand at elevated temperatures (20°C) for periods of 1 hour or more before testing (SPC <20,000/mL)

RECORDING, INTERPRETATION, AND REPORTING

21. Recording and Interpretation

 a. Record values

 b. Interpret

 1. If value obtained is 349 mU/L or lower, sample is **Not Found (NF)**

 2. If value obtained is >350 mU/L sample is **actionable**

22. Report

 a. **Not Found** for residual phosphatase if:

 1. <350 mU/L

 2. >350 mU/L but:

 a. Meets reactivated phosphatase criteria (item 20.d.1)

 b. Meets microbial phosphatase criteria (item 19.d.1)

 c. Documentation shows the product was treated in such a way that reactivated phosphatase may be present
b. **Positive** for residual phosphatase if:

1. $>$350 mU/L and:
 a. Meets residual phosphatase criteria (item 20.d.2)
 b. No microbial phosphatase present (item 19.d.2)
 c. No documentation to show the product could have become reactivated